If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x-10x^2+5=0
a = -10; b = 15; c = +5;
Δ = b2-4ac
Δ = 152-4·(-10)·5
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{17}}{2*-10}=\frac{-15-5\sqrt{17}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{17}}{2*-10}=\frac{-15+5\sqrt{17}}{-20} $
| 11-2d+28=91 | | 10+32-x=28 | | 46.6-g=38.58 | | 3x–2=2x+7 | | 2a+7=14 | | 0.4(5x-140)=x | | m/2.9-4.9=-7.11 | | 2/x+3=8/x | | 2/x-2=8/x | | x^2+6/10=x/5 | | -x+1/7=1/2x | | t-11=76/7 | | 90-5n=25 | | -0.02x^2+1.1x=3.12 | | 5(m-3)=4m-6 | | 3(a-2÷3)=3÷4×a+2×1÷4 | | 4·(x+3)-(1-x)=-1 | | Xx1,8=x+2 | | 4k+5k=4k-8 | | 4x-9=5-2x | | 1/(x-0.1)^2=0 | | 1/(x2+-0.2x+-0.01)=0 | | 1-7x/5=8/3 | | -35=5y-10 | | -45+9y=9 | | -9+9y=9 | | 3^2x+2-2^3.3^x+1=9 | | 4=(x+10) | | 12x-7x+3x=-24 | | 2x/7-4=16 | | -12+12=6y | | (5x/6)-(7/4)+(2x/3)=2x-(5/12)+(x/3) |